mixtures investigated, whereas k_1 takes different values depending upon the system under discussion. These results clearly indicate the presence of a correlation between ΔV and Δn . This is not unexpected because ΔV , which is the deviation from volume additivity, i.e., ideality, can be considered as a measure of interaction between the components and Δn , which is closely related to the change in molecular polarizabilities on mixing of the components,⁴ is also a barometer of interaction between the components.

The following general tendencies concerning ΔV and k_1 are recognized from those tables: (1) The values of k_1 are small in EtOEtOH-H2O and i-BuOEtOH-H2O systems but large in PrOEtOH-H₂O and EtOPrOH-H₂O systems. (2) The values of ΔV are small in BuOEtOH-H₂O and *i*-BuOEtOH-H₂O systems but large in EtOEtOH-H₂O and *i*-PrOEtOH-H₂O systems. (3) The methoxy group induces larger changes in ΔV than the ethoxy group. (4) Isoalkoxyethanol-water systems have larger values of ΔV than *n*-alkoxyethanol–water systems. On the contrary, the former systems have smaller values of k_1 than the latter systems. (5) It is reported that the ability of forming an intramolecular hydrogen bond is larger in MeOPrOH than in MeOEtOH and in EtOPrOH than in EtOEtOH.¹¹ The values of ΔV

are smaller in the MeOPrOH-H₂O system than in the MeOEtOH-H₂O system and smaller in the EtOPrOH-H₂O system than in the EtOEtOH-H₂O system. On the other hand, the value of k_1 is larger in the MeOPrOH-H₂O system than in the MeOEtOH-H₂O system and larger in the EtOPrOH-H₂O system than in the EtOEtOH-H₂O system. The intramolecular hydrogen bonding ability of molecules seems to have great influence on not only ΔV but also Δn .

Literature Cited

- Lorentz, H. A., *Wied. Ann.*, **9**, 641 (1880); Lorenz, L., *ibid.*, **11**, 70 (1880). Wiener, O., *Leipz. Ber.*, **62**, 256 (1910). Heller, W., *Phys. Rev.*, **68**, 5 (1945). Dale, D., Gladstone, F., *Philos. Trans. R. Soc. London*, **148**, 887 (1858).
- (2)
- (3)
- (5)
- Arago, D. F. J., Biot, J. B., *Mem. Acad. Fr.*, 7 (1806). Timasheff, S. N., Townend, R., "Physical Principles and Techniques of (6) Protein Chemistry", Part B, Leach, S. J., Ed., Academic Press, New York, 1970
- (8)
- Smith, L. I., Sprung, J. A., *J. Am. Chem. Soc.*, **65**, 1279 (1943). Crether, L. H., Pittenger, W. H., *J. Am. Chem. Soc.*, **47**, 1649 (1935). Kratky, O., Leopold, H., Stabinger, H. Z., *Angew. Phys.*, **27**, 273 (1969). (9)
- Heller, W., J. Phys. Chem., 69, 1123 (1965).
 Kuhn, L. P., Wires, R. A., J. Am. Chem. Soc., 86, 2161 (1964).

Received for review June 6, 1978. Accepted December 4, 1978.

Solubility of Cuprous Chloride in Aqueous Hydrochloric Acid Solutions[†]

Shashikant S. Kale, Satish S. Tamhankar, and Raghunath V. Chaudhari*

National Chemical Laboratory, Poona 411 008, India

The solubilities of cuprous chloride in water and hydrochloric acid solutions were determined at different temperatures. Effects of temperature and hydrochloric acid concentration on the solubility were correlated by the equation $\ln S = a + b/T + c \ln (1 + dX)$ where S, X, and T are respectively solubility, concentration of hydrochloric acid, and temperature in K, and a, b, c, and d are constants.

Introduction

Solubilities of sparingly soluble solids in liquids are often required in studies on mass transfer in solid-liquid systems. Such data are also important in systems where gas absorption in slurries is followed by its reaction with a simultaneously dissolving solid. The present studies on the solubility of CuCl in aqueous HCl solutions were undertaken in view of their importance in a number of reactions, such as in the reactions of acetylene (1) and of oxygen (3) with cuprous chloride.

The solubility of CuCl in water was studied in the temperature range 20-50 °C. The effect of HCI concentration at various temperatures was also investigated.

Experimental Section

The solubility experiments were carried out in a magnetically stirred vessel provided with a jacket for circulating water at

[†]NCL Communication No. 2282.

Table I. Solubility Data for the CuCl-HCl-H ₂ O Syst

concn of HCl, g-mol/L	solubility of CuCl, $S \times 10^2$, g-mol/L				
	20 °C	29 °C	40 °C	50 °C	
0.0	0.295	0.380	0.519	0.668	
0.129	0.944	1.175	1.603	1.927	
0.158	1.122	1.380	1.884	2.238	
0.266	1.698	2.113	2.985	3.467	
0.398	2.398	2.985	4.121	4.897	
0.603	3.388	4.168	5.888	6.839	

constant temperature. A constant temperature (±0.1 °C) was maintained using a thermostatic bath.

Freshly prepared cuprous chloride stored in a vacuum desiccator was used throughout the work. High-purity nitrogen gas, passed through a pyrogallol solution, was used for flushing purposes. Reagents used for analysis were of AR grade.

In a typical run, the jacketed vessel was thoroughly flushed with nitrogen, and 100 mL of degassed, distilled water was charged with an excess of cuprous chloride. Nitrogen gas was constantly kept bubbling through the slurry, which was magnetically stirred using a Teflon-coated needle. A constant temperature was maintained in the vessel by circulating water through the outer jacket, from a thermostat set at the required temperature.

Samples were withdrawn at intervals of 5-10 min for analysis, and this was continued until saturation was indicated by constancy of two to three consecutive readings. Dissolved cuprous chloride in the samples was analyzed by a method described by Vogel (2).

In all the experiments, precautions were taken to maintain an oxygen-free atmosphere throughout, since cuprous chloride

Figure 1. Temperature dependence of solubility of cuprous chloride.

is highly reactive in the presence of oxygen to form soluble cupric salts.

Results and Discussion

Solubilities of cuprous chloride in water and HCI solutions were determined at 20, 29, 40, and 50 °C. The concentration of HCI was varied from 0.129 to 0.603 g-mol/L. The data are presented in Table I. An experimental error in the solubility values estimated by repeating a single experiment three to four times was found to be less than 5%.

Various empirical equations were used to correlate the data and to obtain a relationship between solubility, temperature, and

Table II. Results of Regression Analysis

parameter	value		
a	2.2265		
b	-2.3480×10^{3}		
С	1.0486		
d	15.0		
ΔH	4.696 kcal/g-mol		
stand dev, σ	1.1513×10^{-3}		

concentration of HCI. The following equation was found to represent the data most satisfactorily:

$$\ln S = a + b/T + c \ln (1 + dX)$$
(1)

where S and X are respectively solubility of cuprous chloride and concentration of HCl in g-mol/L, T is temperature in K, and a, b, c, and d are constants.

In order to obtain the best fit, regression analysis was carried out. The values of the constants a, b, c, and d and the temperature-dependent heat of solution, $\Delta {\it H},$ are given in Table The solubility values estimated from eq 1, using the II. constants in Table II, and the experimental data agree within 2-5%. The Arrhenius type of temperature dependence of solubility is also evident from Figure 1, which is a plot of In S vs. 1/T.

Glossary

d

a, b, c, constants in eq 1

- ΔH temperature-dependent heat of solution, kcal/g-mol
- Ssolubility of cuprous chloride, g-mol/L
- Τ temperature, K
- X concentration of hydrochloric acid, g-mol/L
- σ standard deviation

Literature Cited

- (1) Tamhankar, S. S., Chaudhari, R. V., submitted for publication in Ind. Eng.
- Chem. Fundam. Vogel, I., "Quantitative Inorganic Analysis", 3rd ed., The ELBS and (2)Longman, London, 1975, p 358. (3) Zaveri, A. S., Sharma, M. M., *Chem. Eng. Sci.*, **22**, 1 (1967).

Received for review June 13, 1978. Accepted December 13, 1978.

Surface and Interfacial Tensions of Conjugate Solutions in **Ternary Systems**

Sydney Ross* and Robert E. Patterson

Department of Chemistry, Rensselaer Polytechnic Institute, Troy, New York 12181

A high-precision apparatus was constructed to measure surface and interfacial tensions of liquids by the pendent-drop technique. The method as used in this work requires control of temperature, photographic recording of the drop, precise measurement of dimensions, and the use of a computer to determine the surface tensions from the data input. The surface and interfacial tensions of conjugate solutions of compositions located in the isothermal miscibility gap of two ternary systems were measured. The systems investigated were benzene-water-ethanol and n-hexane-water-ethanol at 20.0 °C.

Knowledge of wetting and spreading is important to engineers in the design of liquid-liquid contact operations wherever matter passes across an interface. For this purpose not merely the interfacial tension but also the surface tensions of the two fluids are required. Such information is recorded for few ternary systems (1-4). Brun (1-3) measured the surface and interfacial tensions of conjugate phases in the water-3-methyl-1-butanol-ethanol system by the method of rising drops; he found that the surface tensions of the conjugate phases approach each other and become equal at the plait point and that the interfacial tension falls to zero at the same point (as would be expected). Murphy, Lastovica, and Fallis (4) report surface and interfacial tensions determined by the ring method for several ternary